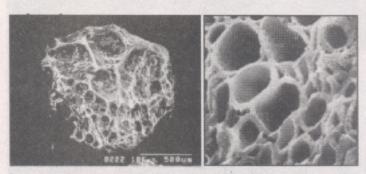
Five-gallon bucket filter for

Drinking Rooftop Rainwater

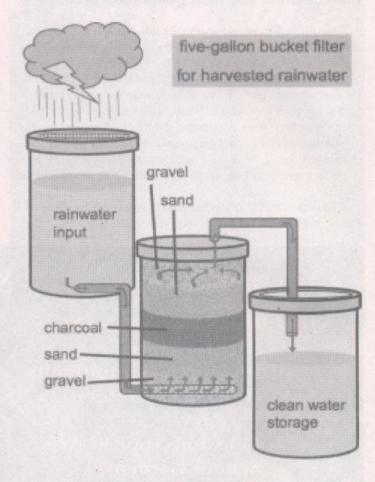

Josh Kearns

ANY HOUSEHOLDS WOULD BENEFIT from using rooftop harvested rainwater as a self-reliant source of drinking water. However, some concerns exist over contamination of the rainwater as it runs over roofing materials such as asphalt shingles.

The U.S. EPA, the World Health Organization and several academic studies identify granular activated carbon (GAC) as the best available technology for the control of hydrocarbons and many synthetic organic chemicals in drinking water. (1,2,3,4) Granular activated carbon is relatively inexpensive and can be purchased on-line or from aquarium supply shops. This paper presents a simple DIY (Do-It-Yourself) design for a five-gallon bucket charcoal filter that can provide a household of five people drinking water for up to six months.

Charcoal filtration

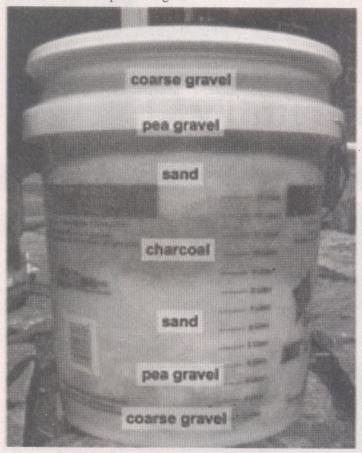
Charcoal consists of elemental carbon in its graphite form. Carbon has been used to purify water for centuries, possibly dating back as far as ancient Egypt and India. (5) Carbon, in the form of graphite, exhibits an exceptionally high surface area per volume: one gram of industrially produced activated carbon may have a surface area of 400-1500 m² (a football field is about 5000 m²). Non-polar organic molecules dissolved in water are strongly



Scanning electron microscope images of GAC. The grain on the left is about 1 mm across. The right image shows a close-up of the pore space.

attracted to this surface and bind due to van der Waals (induced dipole) interactions. Carbon filters are employed in commercial home water treatment systems (to improve water taste, for example) as well as in large-scale municipal treatment facilities.

Carbon filters effectively remove chlorine, mercury, iodine, and some inorganic compounds as well as many problematic organic contaminants such as hydrogen sulphide (H₂S), formaldehyde (HCOH), and volatile organic compounds


(VOCs). Activated carbon does not bind well to certain chemicals including lithium, alcohols, glycols, ammonia, strong acids and bases, metals, and most inorganic substances such as sodium, lead, iron, arsenic, nitrates, and fluoride.

As a general rule, carbon will bind non-polar materials while polar materials will tend to remain in aqueous solution. Most pesticides are organic and strongly non-polar and thus should display an affinity for adsorption onto the carbon surface. Water contaminants that can be reduced to acceptable standards—according to EPA National Drinking Water Standards—by activated carbon filtration include: organic arsenic, chromium and mercury complexes as well as inorganic mercury, benzene, endrin, lindane, methoxychlor, 1,2-dichloroethane, 1,1 dichloroethylene, 1,1,1-trichloroethane, trihalomethanes, toxaphene, 2,4-D, 2,4,5-TP (Silvex), and p-dichlorobenzene. (6)

Charcoal Bucket Filter Design

This design is for a charcoal bucket filter meant to serve a household of about five people who want to drink harvested rainwater but are concerned about contamination from roofing materials such as asphalt shingles.

Microbial contamination—primarily from fecal coliforms—is not a big concern since the rainwater runs only across a roof (unless there are a lot of bird droppings). But some microbes will likely be picked up, and charcoal provides an excellent surface for colonies to attach to. It's doubtful that a slow sand filter could generate sufficient biological action in a short period of time on such a small-scale as a five-gallon bucket, as used here. However, fine sand can still act as an adequate filter by occluding microorganisms that cannot fit through the pore spaces between sand grains. Thus, this design does not rely on a mature schmutzedecke* to perform decontamination and degradation as in full-scale bio-sand filter designs.

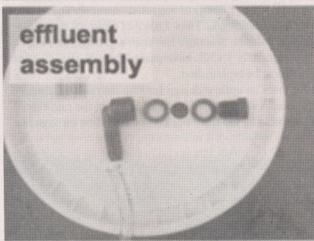
*Schmutzedecke — German, literally "scum layer." So-called bio-sand filters rely on a layer of microorganisms living in the top few centimeters of sand to perform most of the decontamination. In the filter design presented here, the sand functions simply as a strainer. More information on bio-sand filtration can be found on the Aqueous Solutions website—www.aqsolutions.org.

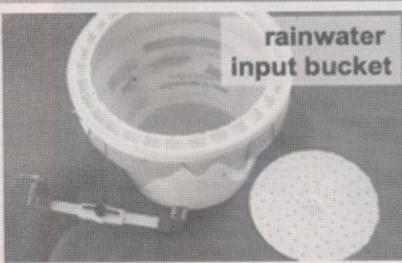
Design specifications

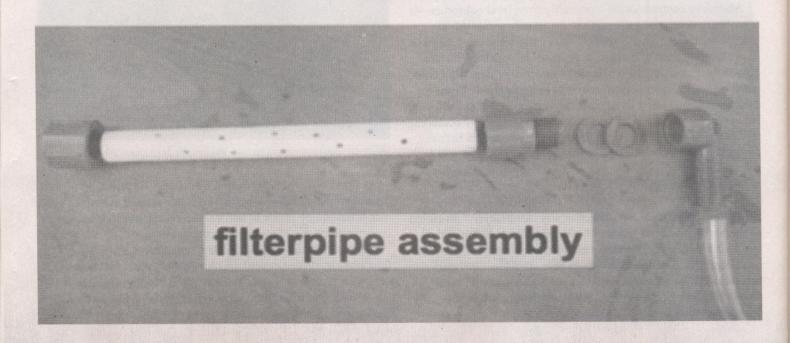
This bucket filter uses a multi-layered design, with a bed of charcoal "sandwiched" between two layers each of fine sand and gravel. The charcoal filter medium used here is a commercial activated charcoal, or filter carbon, which can be purchased in bulk from any aquarium supply shop or via the internet. Since the filtered water will be used for drinking, we make conservative estimates about the quantity of filter carbon needed to purify a given volume of rainwater. For this design, we assume that one gram of activated charcoal is necessary to purify one liter (1L) of rainwater. One gram of activated charcoal is probably adequate to purify 10L of rainwater; our design specifications use the 1g to 1L ratio as a measure of precaution since the water is for drinking, and because charcoal is relatively inexpensive.

Assuming a household of five people and each person's drinking water intake at 2L per day (USEPA guideline), then to purify enough drinking water for a period of six months (183 days) requires 1830g (1.83kg) of activated charcoal. The density of charcoal is about 500g/L. Thus 1.83kg of charcoal occupies about 3.66L of volume, or a little less than a gallon. After six months approximately 1,830L have passed through the filter and the charcoal must be replenished.

The filter uses an upflow design for economy of construction and ease of use. A single valve installed between the rainwater collection bucket and the filter bucket controls flow through the system.




Flow-restrictor valve with modified nickel installed.


A flow restrictor is fabricated by drilling 1-3 holes, 3/16" in diameter, in a nickel or other suitable disk-shaped material. A nickel fits snugly into a 1" ball valve housing and so is a convenient choice of material for this purpose.

One 3/16" hole should provide a flow rate of 1-1.5 L/min. The flow rate should not exceed 4 L/min to ensure adequate contact time between the rainwater and the charcoal filter medium. A pea gravel and rock underdrain support the layers of filtration media and keep the sand from backing up into the intake pipe. From the

influent assembly

bottom up, the sequence of filter media should be: coarse gravel, pea gravel, sand, charcoal, sand, pea gravel, coarse gravel. Each layer of sand or gravel should be 2-3" deep; the media should completely fill the filter bucket. The sand should be fine-grained and thoroughly washed; pre-washed play sand works well, but needs additional washing to remove the finest fraction of silt. The pea gravel and coarse gravel should also be thoroughly washed before use in the filter.

The charcoal should also be washed prior to use in the filter. This is easily done by using a 3'x 3' piece of window screen to bundle up about one gallon of charcoal at a time, tying the bundle securely with twine, and then dunking vigorously several times in an ample volume of clean water. The blackened water is discarded and the charcoal dunked again in clean water until most of the fine charcoal particles are removed.

The filter pipe assembly (see photograph at bottom of pg. 24) is fabricated by drilling several 1/16" diameter holes into a 9" section of PVC pipe. This helps to disperse the flow of water into the filter bucket and encourages even distribution and laminar flow through the layers of filter media. Holes 3/4" in diameter are drilled near the base of each bucket and in the lid of the filter bucket using a spade bit. Plumbing joints installed in these holes use rubber washers to provide a snug fit and prevent leaks. All threaded pvc connections are taped with Teflon to provide a good seal and prevent leaks. PVC slip fittings can probably be made hand-tight and will not leak; this avoids the need for pvc glue, which is unpleasant to work with.

Parts and Tools Inventory

Tools needed are: drill; 3/4" spade drill bit; 1/16" sheet metal drill bit; sandpaper - medium to coarse grade; boxcutter or exacto knife; scissors; pocket knife; pliers; saw to cut PVC; window screen - 3'x3'; twine - 6 ft; measuring cup - 1L size or larger.

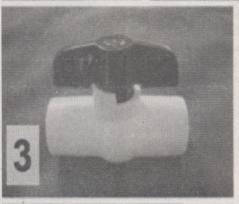
The rainwater input bucket (see photograph to left) is fabricated by cutting an 8"circle out of the bucket lid, and using the rim of the lid to secure a 15"x15" piece of window screen over the mouth of the bucket. This assembly screens out debris in the source rainwater to help prevent clogging of the system.

The lid of the filter bucket should fit snugly to prevent leaking during filter operation. If leaking occurs, Teflon tape can be applied in the gap in the lid to create a seal with the rim of the bucket mouth. If leaking still occurs, some soft silicone sealant can be used to seal the lid to the bucket rim. (Use soft silicone so that the lid can be easily removed using a boxcutter or exacto knife later when it's time to change the charcoal.)

Total expenses for all parts and filter media should not exceed \$90—a good scavenger could acquire most of these materials at much less cost. Thus, for a household of five people, for the first six months of operation the cost should be less than \$3 per person per month, or less than \$0.05 per liter. For subsequent six-month periods over the lifetime of system, the cost should drop below \$0.02 per liter, or \$1.30 per person per month.

For more information on sustainability and self-reliance in drinking water filtration, see our website: www.aqsolutions.org.

To wash the filter carbon, bunch it in a square of window screen, tie securely, and dunk it vigorously in water several times until most of the black sediment is washed out.


Part Number Description Quantity, Amount, Size, etc. Approximate cost

- 1. Commercial activated carbon: filter carbon 1 gal.@\$35.
- 2. 5-gallon plastic bucket w/lid: 2@\$8.50.
- 3. 1/2 inch ball valve, 1@\$2.50.
- 4. Teflon tape 3-4', \$1/roll. (not shown)
- 5. 1/2" inner-diameter rubber washers, 6-10, \$1 - \$2 total.
- 6. 1/2" PVC elbow fitting, threaded and slip 2@\$3.50.
- 7. 1/2" male threaded PVC insert connector 1@\$0.75.
- 8. 1/2" female threaded PVC insert connector, 2@\$0.75.
- 9. 1/2" PVC end-cap, slip, 1@\$1.75.
- 10. 1/2" PVC bushing, threaded, 2@\$3.50.
- 11. 1/2" PVC adapter; male threaded, female slip 1@\$2.
- 12. 1/2" inner-diameter vinyl or Tygon tubing, 6', \$0.30/ft.
- 13. Sand 2 gals. ~ 30 lbs. \$5 / 50 lbs. (not shown)
- 14. Pea gravel, 1 gal. ~ 15 lbs. \$5 / 50 lbs.
- 15. Coarse gravel, 1 gal. ~ 15 lbs. \$5 / 50 lbs.
- 16. 1/2" PVC pipe, 2-1/2" in length, 2 pcs. \$3 for 6 ft. (not shown)
- 17. 1/2" PVC drainpipe, 9" in length, 1@\$3 for 6 ft.
- 18. Nickel, 1, \$0.05
- 19. Window screen, 15"x15" \$5 per roll.

References

1.US EPA. National primary drinking water regulations; final rule. Federal Register, 30 January 1991. 1991; 56 20: 3526 3597.

2. World Health Organization website: (http://www.who.int/

water_sanitation_health/dwq/wsh0207/en/ index6.html) section 2.3

Charcoal and activated carbon adsorption

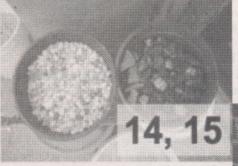
3. Pontius F. An update of the federal

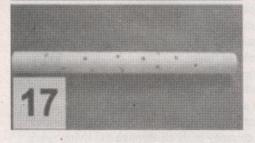
drinking water regs. JAWWA 1995; 87:

4. Pesticide Adsorption by Granular Activated Carbon Adsorbers. 1. Effect of Natural Organic Matter Preloading on Removal Rates and Model Simplification. Matsui Y, Knappe DRU, Takagi R. Environ. Sci. Technol. 2002, 36, 3426-

5. Wikipedia: http://en.wikipedia.org/wiki/ Carbon_filtering

6. Water Quality Association, 1989. Recognized treatment techniques for





Finished filter system assembled (below right). Note screen on top (collecting) bucket to filter influent.

meeting the National Primary Drinking Water Regulations with the application of point-of-use systems.; and, Water Quality Association, 1989. Recognized treatment techniques for meeting the National Secondary Drinking Water Regulations with the application of point-of-use systems. See also Seelig B, Bergsrud F, and Derickson R. Treatment Systems for Household Water Supplies: Activated Carbon Filtration.

Lower left bucket contains sand, gravel, and carbon.

restricting

collection

filter.

reservoir to

February 1992. (http://www.ag.ndsu.edu/ pubs/h2oqual/watsys/ae1029w.htm)

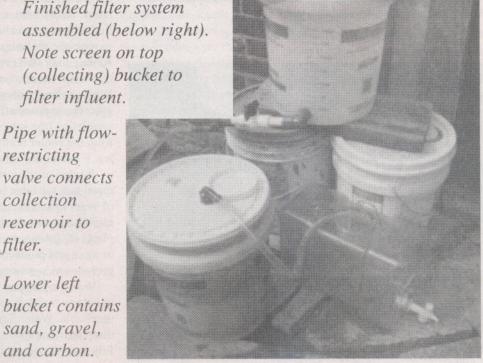
Other Water Resources

Water in the Home Landscape pamphlet, \$7

Harvesting Rainwater I & II **Guiding Principles & Earthworks** books, vol. I \$25 • vol. II \$33

Water Storage, \$20

Dam Nation, \$20


Planting Green Roofs & Living Walls, \$35

Creating an Oasis with Greywater \$21

> **Greywater Builders Guide** \$15

Permaculture Activist PO Box 5516 **Bloomington IN 47407 USA**

www.PermacultureActivist.net

