Multiwalled carbon nanotubes-Titanium dioxide (MWNTs-TiO₂) composite for sustainable water treatment at the point-of-use

Qammer Zaib, ≤ PhD
qzaib@masdar.ac.ae
Abu Dhabi, UAE
Oct 12, 2016

Contents

- 1. What is a MWNTs-TiO₂ composite?
- 2. What it can remove from water (to clean it)?
- 3. How the composite can be sustainably used for water treatment?
- 4. What is the current R & D status of the composite?

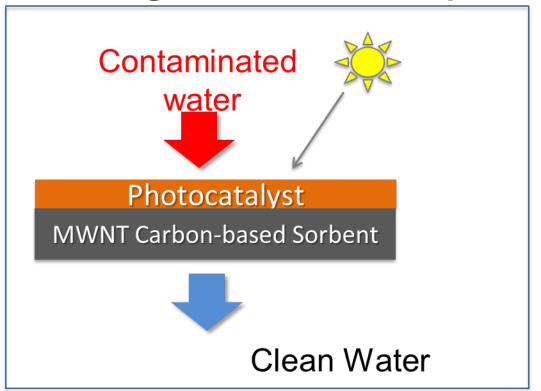
What is a multiwalled carbon nanotubes/titanium dioxide (MWNTs-TiO₂) composite?

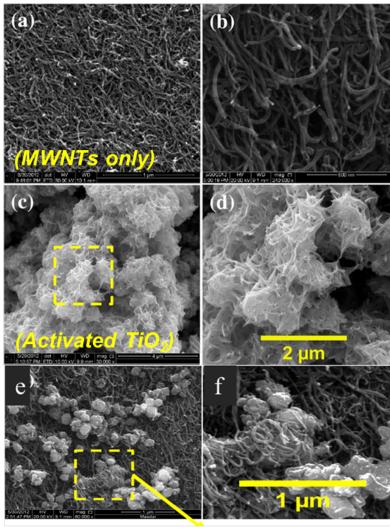
MWNTs

- Adsorbs
 - Organic compounds
 - Inorganic ions
- Inactivates Bacteria

TiO₂

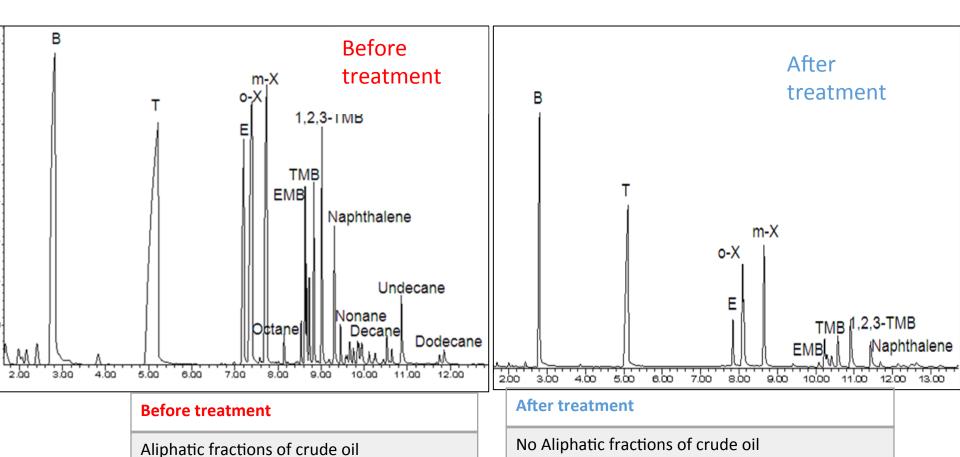
 Photocatalyses persistent organic toxins Hydrothermal / Sonication


MWNTs-TiO₂ composite


Adsorbs and Photocatalyses

How the composite works?

Photo-regenerable nanocomposite



(MWNTs -TiO₂)

What it can do? Removes organic compounds from water

Low BTEX conc.

What it can do? Removes inorganics and inactivates bacteria

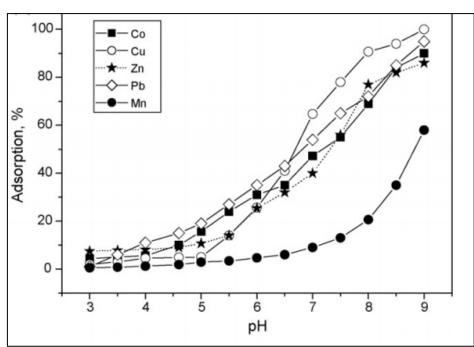
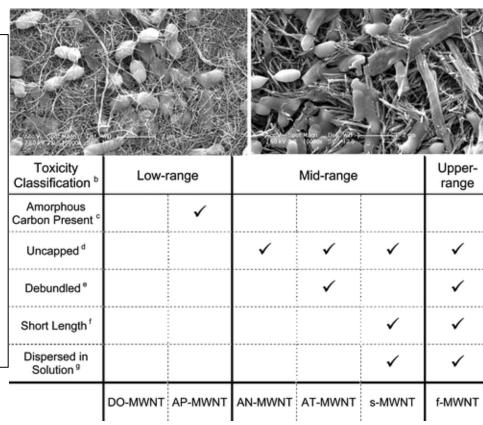
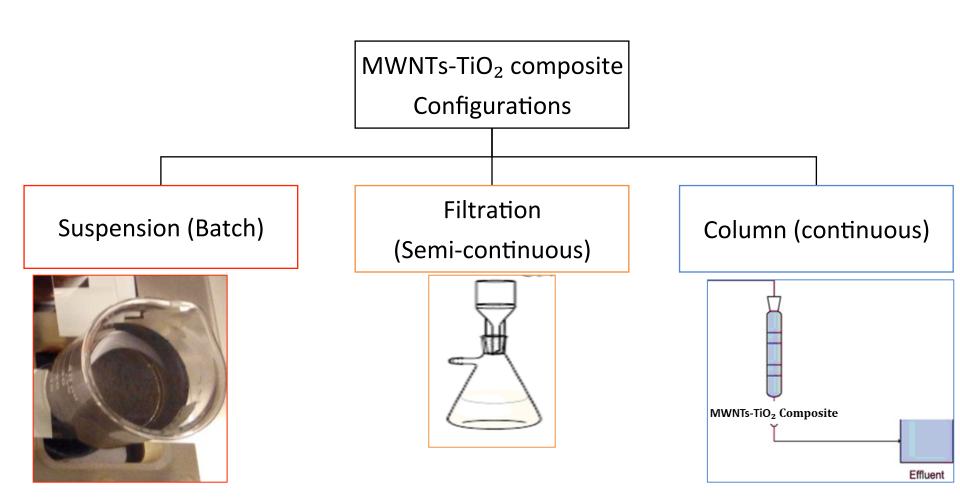
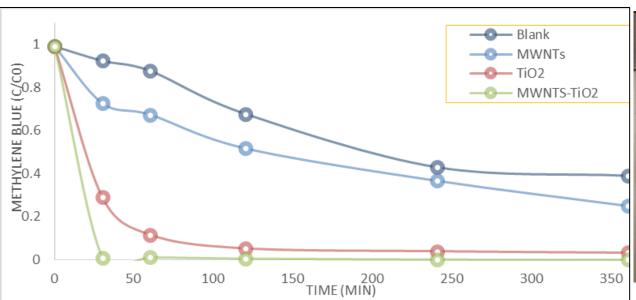


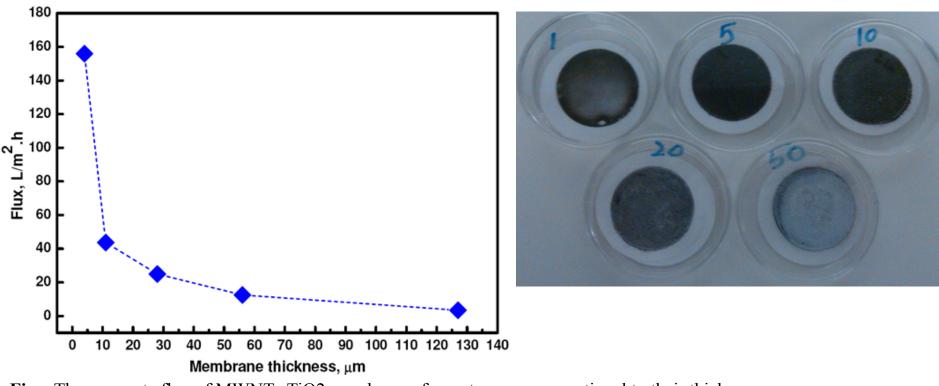
Fig. Adsorption removal of heavy metals by MWNTs


Fig. (Above) Cell wall damage and Table (Below) Toxicity classification of various types of MWNTs towards bacteria

How the composite can be sustainably used for water treatment?

How it is can be used? Suspension



Left: Photocatalytic degradation of methylene blue.

Right: Photocatalytic setup of Methylene Blue and Methylene Red degradation. UV irradiation wavelength was 320 nm and thermal oxidation was controlled by creating thermal buffer by air and glass slide

How it is can be used? Filtration

Fig. The permeate flux of MWNTs-TiO2 membranes for water were proportional to their thicknesses. The plot shows flux of deionized water through MWNTs-TiO₂ membranes of various thicknesses under the effect of gravity. The pressure was kept constant at 3.43 N/cm² by controlling water head

How it is can be used? Filtration

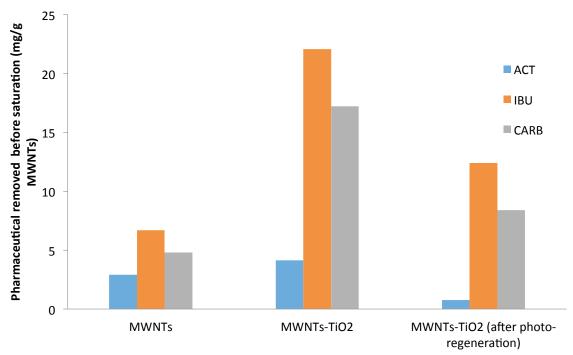
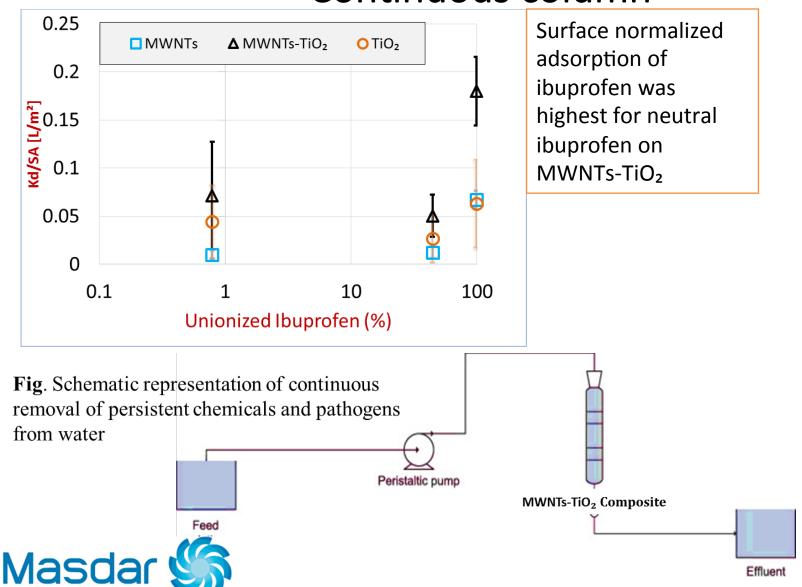


Table. Physical properties of Compounds (SRC, 2011)

Compound	CAS	Formulae	Structure	Mol. Wt (g/mol)	Log Kow	Water Solubility (25 °C) mg/L	Absorption wavelength (nm)	рКа
Acetaminophen	103- 90-2	C ₈ H ₉ NO ₂	H ₃ C N OH	151.17	0.46	1.40E+04	244	9.5
Ibuprofen	15687- 27-1	C ₁₃ H ₁₈ O ₂	CH ₃ OH	206.29	3.97	21	222	4.9
Carbamazepine	298- 46-4	C ₁₅ H ₁₂ N ₂ O	ONH ₂	236.28	2.45	17.7	284	13.9 (Bui and Choi, 2010)

Fig.. The mass loadings of pharmaceuticals on (i) MWNTs membranes, (ii) MWNTs-TiO₂ membranes during 1st run, and (iii) MWNTs-TiO₂ membranes after photo-regeneration.


The pharmaceuticals mass removal was calculated when the membranes fully saturated with pharmaceuticals and their pharmaceutical removal efficiency reached zero.

The influent concentration of acetaminophen, ibuprofen, and carbamazepine was 10 mg/L each in deionized water ($18 \mu\text{S/cm}$).

Zaib, Q., B. Mansoor, and F. Ahmad, Photo-regenerable multi-walled carbon nanotube membranes for the removal of pharmaceutical micropollutants from water. Environ Sci Process Impacts, 2013, 15(8): p. 1582-9

How it is can be used? Continuous column

In collaboration with

What is the R&D status of composite?

Real world application

Pilot studies

Continuous system

• Rapid small scale column test [RSST] (In progress)

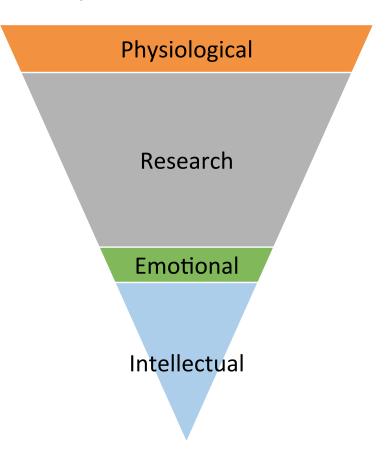
How the composite can be sustainably used for water treatment?

- Q. Zaib. B. Mansoor, F. Ahmad, Photo-regenerable multi-walled carbon nanotube membranes for the removal of pharmaceutical micropollutants from water, *Environ. Sci.: Processes Impacts*, 15 (2013) 1582-1589.
- Q. Zaib, O.D. Aina, F. Ahmad, Using multi-walled carbon nanotubes (MWNTs) for oilfield produced water treatment to environmentally acceptable endpoints, Environ. Sci.: Processes Impacts, (2014).

What it can remove from water? (Adsorption and photocatalysis)

- Q. Zaib. H. Fath, Application of carbon nano-materials in desalination processes, Desalination and Water Treatment, 51 (2013) 627-636.
- Q. Zaib. I.A. Khan, N.B. Saleh, J.R. Flora, Y.-G. Park, Y. Yoon, Removal of Bisphenol A and 17β-Estradiol by Single-Walled Carbon Nanotubes in Aqueous Solution: Adsorption and Molecular Modeling, *Water, Air, & Soil Pollution*, (2012) 1-13.
- L. Joseph, Q. Zaib. I.A. Khan, N.D. Berge, Y.-G. Park, N.B. Saleh, Y. Yoon, Removal of bisphenol A and 17α-ethinyl estradiol from landfill leachate using single-walled carbon nanotubes, Water Research, 45 (2011) 4056-4068

What it is? (Proof of concept)


 Q. Zaib. I.A. Khan, Y. Yoon, J.R. Flora, Y.-G. Park, N.B. Saleh, Ultrasonication study for suspending single-walled carbon nanotubes in water, *Journal of Nanoscience and Nanotechnology*, 12 (2012) 3909-3917..

Acknowledgements

(modified Maslow's hierarchy of needs)

- MIT and MI Cooperative Program
- My PhD Advisors
 - Dr Farrukh Ahmad (Masdar 🗳)
 - Dr. Philip M. Gschwend Massachusetts Institute of Technology
- Family and friends
- Scientists/statisticians
 - George E. P. Box
 - Pierre Curie and Jacques Curie
 - Sumio lijima
 -countless others

Multiwalled carbon nanotubes-Titanium dioxide (MWNTs-TiO₂) composite for sustainable water treatment at the point-of-use

Qammer Zaib, ≤ PhD qzaib@masdar.ac.ae

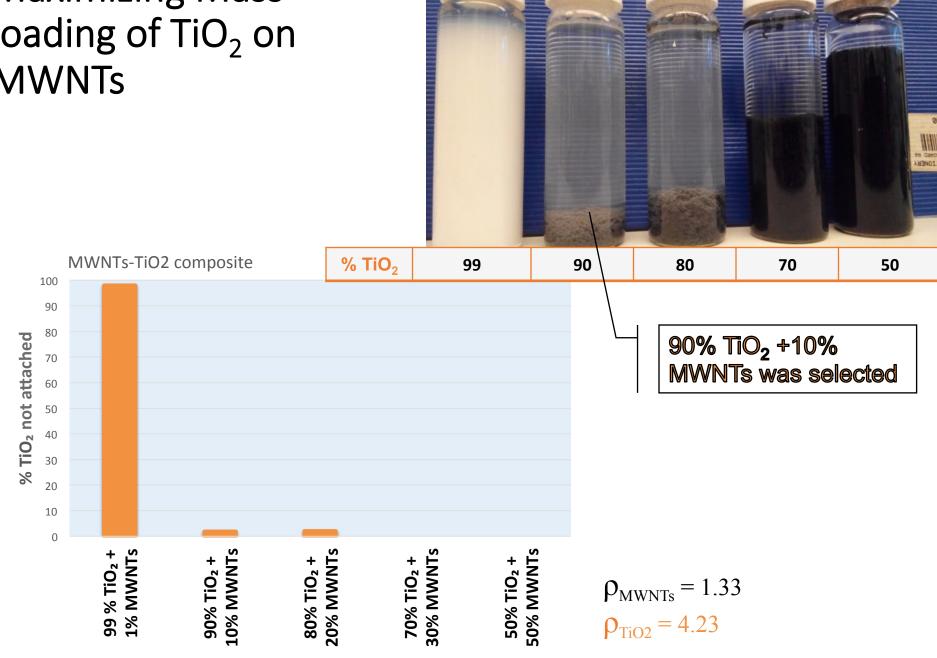
Oct 12, 2016

References

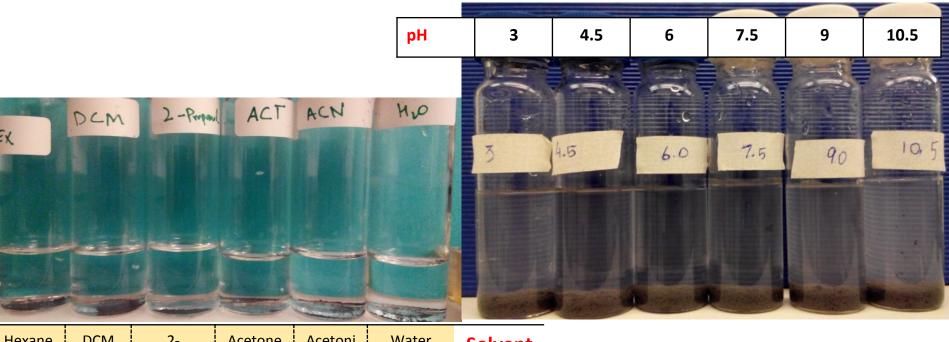
PUBLICATIONS

PATENT

[1] Ahmad F, Zaib Q, Photo-regenerable filters useful for the removal of organic compounds. Application number 14/609,696, Jan 29, 2015.U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE


PEER REVIEWED PUBLICATIONS

- [6] **Q. Zaib**, O.D. Aina, F. Ahmad, Using multi-walled carbon nanotubes (MWNTs) for oilfield produced water treatment to environmentally acceptable endpoints, *Environ. Sci.: Processes Impacts*, (2014).
- [5] **Q. Zaib,** B. Mansoor, F. Ahmad, Photo-regenerable multi-walled carbon nanotube membranes for the removal of pharmaceutical micropollutants from water, *Environ. Sci.: Processes Impacts*, 15 (2013) 1582-1589.
- [4] **Q. Zaib,** H. Fath, Application of carbon nano-materials in desalination processes, *Desalination and Water Treatment*, 51 (2013) 627-636.
- [3] **Q. Zaib,** I.A. Khan, Y. Yoon, J.R. Flora, Y.-G. Park, N.B. Saleh, Ultrasonication study for suspending single-walled carbon nanotubes in water, *Journal of Nanoscience and Nanotechnology*, 12 (2012) 3909-3917.
- [2] **Q. Zaib,** I.A. Khan, N.B. Saleh, J.R. Flora, Y.-G. Park, Y. Yoon, Removal of Bisphenol A and 17β-Estradiol by Single-Walled Carbon Nanotubes in Aqueous Solution: Adsorption and Molecular Modeling, *Water, Air, & Soil Pollution*, (2012) 1-13.
- [1] L. Joseph, **Q. Zaib**, I.A. Khan, N.D. Berge, Y.-G. Park, N.B. Saleh, Y. Yoon, Removal of bisphenol A and 17α-ethinyl estradiol from landfill leachate using single-walled carbon nanotubes, *Water Research*, 45 (2011) 4056-4068.

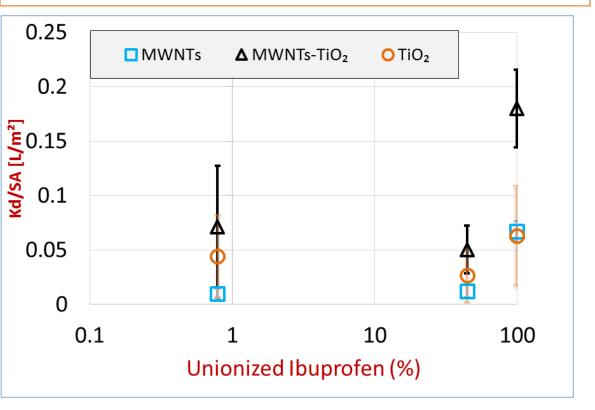

SELECTED CONFERENCE PROCEEDINGS

- [10] Zaib Q, and Ahmad F. Ibuprofen Sorption on Regenerable Networked Carbon Nanotubes." In Gordon Research Conference on Environmental Nanotechnology. Mount Snow in West Dover VT United States 2015.
- [9] Zaib Q, Aina O.D., Ahmad F. "Using Multi-Walled Carbon Nanotubes for Oilfield Produced Water Treatment to Environmentally Acceptable Endpoints." In Gordon Research Conference on Environmental Nanotechnology. Mount Snow in West Dover VT United States, 2015.
- [8] Zaib Q, Mansoor B., Ahmad F. MWNTs-TiO₂ water permeable membrane adsorbs and photo-catalyzes organic micropollutants in water. 11th IWA Leading Edge conference; 2014 May 26–29; Abu Dhabi, UAE; 2012.
- [7] Zaib Q, Aina O.D., Ahmad F. Adsorption removal of BTEX during produced water treatment using multiwalled carbon nanotubes. 11th IWA Leading Edge conference; 2014 May 26–29; Abu Dhabi, UAE; 2012.
- [6] **Zaib Q.** Mansoor B., Ahmad F. Removal of acetaminophen, ibuprofen, and carbamazepine from water by photo regenerative multiwalled carbon nanotubes-titanium dioxide. IWA Conference Micropol & Ecohazard, June 16-20, 2013 in Zurich, Switzerland, 2013.
- [5] Zaib Q, Mansoor B., Ahmad F. Continuous removal of pharmaceuticals from water using a regenerable MWNTs-TiO₂ membrane. IWA 2nd water research conference; 2013 Jan 20–23; Singapore; 2013.
- [4] Zaib Q. Fath H. Application of carbon nano-materials in desalination processes. Desalination for the environment, clean water, and energy; 2012 April 22–26; Barcelona, Spain; 2012.
- [3] **Zaib Q**, Khan IA, Flora J, Park Y-G, Saleh NB, Yoon Y. The Effects of Water Chemistry on Removal of Bisphenol A and 17- beta Estradiol by Single-walled Carbon Nanotubes. Water Quality and Technology Conference, AWWA, ; 2011 Nov 14-18; Savannah, GA, USA; 2011.
- [2] Joseph L. Zaib Q. Berge N., Flora J, Park YG, Khan IA, et al. Removal of Bisphenol A and 17α-Ethinyl Estradiol from Landfill Leachate Using Carbon Nanotubes. Annual Conference & Exposition, AWWA, ; 2011 June12-16; Washington, DC, USA; 2011
- [1] Afrooz AN, Zaib Q. Decho AW, Saleh NB. Role of Nanoparticle Geometry on Nano-bio Interaction: A Quest to Separate Physics from Chemistry. ACS National Meeting, 2010 Aug 22-26; Boston, MA, USA: ACS; 2010.

Maximizing Mass loading of TiO₂ on **MWNTs**

MWNTs-TiO₂ composite testing

Hexane	DCM	2- propanol	Acetone	Acetoni trile	Water	Solvent
0	3.1	3.9	5.1	5.8	9	Polarity
	View 1		-	L. W		

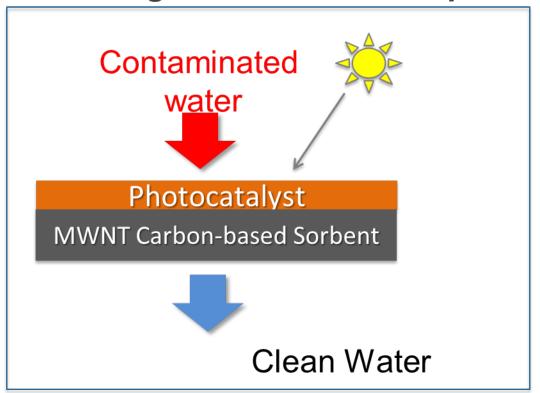

Insignificant (< 1%) amount of TiO_2 dislodged from the composite.

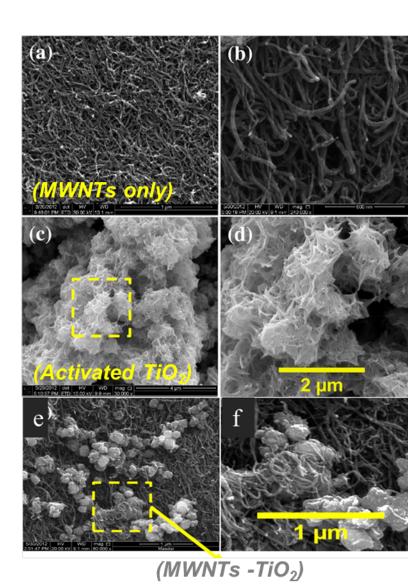
1-with different solvents (left)

2-at different pH (right)

How it is can be used? Continuous column

Surface normalized adsorption of ibuprofen was highest for neutral ibuprofen on MWNTs-TiO₂





	MW	NTs / M	WNTs-				
	TiO ₂			MWNTs-TiO2/TiO ₂			
рН	3	5	7	3	5	7	
P-							
values	0.01	0.04	0.12	0.01	0.21	0.46	

Photo-regenerable nanocomposite

